
P R I M E R

Dynamic programming algorithms are a
good place to start understanding what’s
really going on inside computational biology
software. The heart of many well-known pro-
grams is a dynamic programming algorithm,
or a fast approximation of one, including
sequence database search programs like
BLAST and FASTA, multiple sequence align-
ment programs like CLUSTALW, profile
search programs like HMMER, gene finding
programs like GENSCAN and even RNA-
folding programs like MFOLD and phyloge-
netic inference programs like PHYLIP.

Don’t expect much enlightenment from
the etymology of the term ‘dynamic program-
ming,’ though. Dynamic programming was
formalized in the early 1950s by mathemati-
cian Richard Bellman, who was working at
RAND Corporation on optimal decision
processes. He wanted to concoct an impres-
sive name that would shield his work from US
Secretary of Defense Charles Wilson, a man
known to be hostile to mathematics research.
His work involved time series and planning—
thus ‘dynamic’ and ‘programming’ (note,
nothing particularly to do with computer
programming). Bellman especially liked
‘dynamic’ because “it’s impossible to use the
word dynamic in a pejorative sense”; he fig-
ured dynamic programming was “something
not even a Congressman could object to”1.

The best way to understand how dynamic
programming works is to see an example.
Conveniently, optimal sequence alignment
provides an example that is both simple and
biologically relevant.

The biological problem: pairwise
sequence alignment
We have two DNA or protein sequences, and
we want to infer if they are homologous or
not. To do this, we will calculate a score that
reflects how similar the two sequences are
(that is, how likely they are to be derived from
a common ancestor). Because sequences differ
not just by substitution, but also by insertion
and deletion, we want to optimally align the
two sequences to maximize their similarity.

Why do we need a fancy algorithm? Can’t
we just score all possible alignments and pick
the best one? This isn’t practical, because
there are about 22N/√—––

2πN different align-
ments for two sequences of length N; for two
sequences of length 300, that’s about 10179

different alignments.
Let’s set up the problem with some nota-

tion. Call the two sequences x and y. They are
of length M and N residues, respectively. The
ith residue in x is xi; the jth residue of y is yj. We

need some parameters for how to score align-
ments: we’ll use a scoring matrix σ(a, b) for
aligning two residues a,b to each other (e.g., a
4 × 4 matrix for scoring any pair of aligned
DNA nucleotides, or simply a match and a
mismatch score), and a gap penalty γ for every
time we introduce a gap character.

A dynamic programming algorithm con-
sists of four parts: a recursive definition of the
optimal score; a dynamic programming
matrix for remembering optimal scores of
subproblems; a bottom-up approach of filling
the matrix by solving the smallest subprob-
lems first; and a traceback of the matrix to
recover the structure of the optimal solution
that gave the optimal score. For pairwise
alignment, those steps are the following:

Recursive definition of the optimal
alignment score
There are only three ways the alignment can
possibly end: (i) residues xM and yN are

What is dynamic programming?
Sean R Eddy

Sequence alignment methods often use something called a ‘dynamic programming’ algorithm. What is dynamic
programming and how does it work?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 7 JULY 2004 909

Figure 1 The filled dynamic
programming matrix for two DNA
sequences, x = TTCATA and
y = TGCTCGTA, for a scoring
system of +5 for a match, –2
for a mismatch and –6 for each
insertion or deletion. The cells in
the optimum path are shown in
red. Arrowheads are ‘traceback
pointers,’ indicating which of
the three cases were optimal
for reaching each cell. (Some
cells can be reached by two or
three different optimal paths
of equal score: whenever two
or more cases are equally
optimal, dynamic programming
implementations usually choose
one case arbitrarily. In this
example, though, the optimal
path is unique.)

T G C T C G T A

–48–42–36–30–24–18–12–60

–37–31–25–19–13–7–15–6

–26–20–14–8–2–33–1–12

–15–9–3328–3–7–18

–4–51062–9–13–24

06–247–4–15–19–30

110251–10–21–25–36

T G C T C G T A
1 2 3 4 5 6 7 8

T

T

C

A

T

A

1

2

3

4

5

6

T – – T C A T A

+5 –6 –6 +5 +5 –2 +5 +5

scores 11:Optimum alignment

Dynamic programming matrix:

0i

0
j (sequence y)

(seq
uence

x)

M =

 = N

_computational
BIOLOGY

©
20

04
 N

at
ur

e
P

ub
lis

hi
ng

 G
ro

up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

P R I M E R

aligned to each other; (ii) residue xM is
aligned to a gap character, and yN appeared
somewhere earlier in the alignment; or (iii)
residue yN is aligned to a gap character and xM
appeared earlier in the alignment. The opti-
mal alignment will be the highest scoring of
these three cases.

Crucially, our scoring system allows us to
define the score of these three cases recur-
sively, in terms of optimal alignments of the
preceding subsequences. Let S(i, j) be the
score of the optimum alignment of sequence
prefix xl…xi to prefix yl…yj. The score for case
(i) above is the score s(xM, yN) for aligning xM
to yN plus the score S(M – 1, N – 1) for an
optimal alignment of everything else up to
this point. Case (ii) is the gap penalty γ plus
the score S(M – 1, N); case (iii) is the gap
penalty γ plus the score S(M, N – 1).

This works because the problem breaks
into independently optimizable pieces, as the
scoring system is strictly local to one aligned
column at a time. That is, for instance, the
optimal alignment of xl…xM – 1 to yl…yN – 1 is
unaffected by adding on the aligned residue
pair xM, yN, and likewise, the score s(xM, yN)
we add on is independent of the previous
optimal alignment.

So, to calculate the score of the three cases,
we will need to know three more alignment
scores for three smaller problems:

S(M – 1, N – 1), S(M – 1, N), S(M, N – 1).

And to calculate those, we need the solu-
tions for nine still smaller problems:

S(M – 2, N – 2), S(M – 2, N – 1), S(M – 1, N – 2),

S(M – 2, N – 1), S(M – 2, N), S(M – 1, N – 1),

S(M – 1, N – 2), S(M – 1, N – 1), S(M, N – 2).

and so on, until we reach tiny alignment sub-
problems with obvious solutions (the score
S(0,0) for aligning nothing to nothing is
zero).

Thus, we can write a general recursive defi-
nition of all our partial optimal alignment
scores S(i, j):{

S(i – 1, j – 1) + σ(xi, yj),
S(i,j) = max S(i – 1, j) + γ,

S(i,j – 1,) + γ.

The dynamic programming matrix
The problem with a purely recursive align-
ment algorithm may already be obvious, if
you looked carefully at that list of nine smaller
subproblems we’d be solving in the second
round of the top-down recursion. Some sub-
problems are already occurring more than

once, and this wastage gets exponentially
worse as we move deeper into the recursion.
Clearly, the sensible thing to do is to somehow
keep track of which subproblems we are
already working on. This is the key difference
between dynamic programming and simple
recursion: a dynamic programming algo-
rithm memorizes the solutions of optimal
subproblems in an organized, tabular form (a
dynamic programming matrix), so that each
subproblem is solved just once.

For the pairwise sequence alignment algo-
rithm, the optimal scores S(i, j) are tabulated
in a two-dimensional matrix, with i running
from 0...M and j running from 0...N, as shown
in Figure 1. As we calculate solutions to sub-
problems S(i, j), their optimal alignment
scores are stored in the appropriate (i, j) cell of
the matrix.

A bottom-up calculation to get the
optimal score
Once the dynamic matrix programming
matrix S(i, j) is laid out—either on a napkin
or in your computer’s memory—it is easy to
fill it in in a ‘bottom-up’ way, from smallest
problems to progressively bigger problems.
We know the boundary conditions in the left-
most column and topmost row (S(0, 0) = 0;
S(i, 0) = γi; S(0, j) = γj): for example, the opti-
mum alignment of the first i residues of
sequence x to nothing in sequence y has only
one possible solution, which is to align to gap
characters and pay i gap penalties. Once we’ve
initialized the top row and left column, we
can fill in the rest of the matrix by using the
recursive definition of S(i, j) to calculate any
cell where we already know the values we need
for the three adjoining cells to the upper left
(i–1, j–1), above (i–1, j) and to the left (i, j–1).
There are several different ways we can do
this; one is to iterate two nested loops, i = 1 to
M and j = 1 to N, so we’re filling in the matrix
left to right, top to bottom.

A traceback to get the optimal alignment
Once we’re done filling in the matrix, the
score of the optimal alignment of the com-
plete sequences is the last score we calculate,
S(M, N). We still don’t know the optimal
alignment itself, though. This, we recover by a
recursive ‘traceback’ of the matrix. We start in
cell M,N, determine which of the three cases
we used to get here (e.g., by repeating the
same three calculations), record that choice as
part of the alignment, and then follow the
appropriate path for that case back into the
previous cell on the optimum path. We keep

doing that, one cell in the optimal path at a
time, until we reach cell (0,0), at which point
the optimal alignment is fully reconstructed.

Fine. But what do I really need to know?
Dynamic programming is guaranteed to
give you a mathematically optimal (highest
scoring) solution. Whether that corresponds
to the biologically correct alignment is a
problem for your scoring system, not for the
algorithm.

Similarly, the dynamic programming algo-
rithm will happily align unrelated sequences.
(The two sequences in Figure 1 might look
well-aligned; but in fact, they are unrelated,
randomly generated DNA sequences!) The
question of when a score is statistically signif-
icant is also a separate problem, requiring
clever statistical theory.

Dynamic programming is surprisingly
computationally demanding. You can see that
filling in the matrix takes time proportional
to MN. Alignment of two 200-mers will take
four times as long as two 100-mers. This is
why there is so much research devoted to
finding good, fast approximations to dynamic
programming alignment, like the venerable
workhorses BLAST and FASTA, and newer
programs like BLAT and FLASH.

Only certain scoring systems are amenable
to dynamic programming. The scoring sys-
tem has to allow the optimal solution to be
broken up into independent parts, or else it
can’t be dealt with recursively. The reason that
programs use simple alignment scoring sys-
tems is that we’re striking a reasonable com-
promise between biological realism and
efficient computation.

Note: Supplementary information is available on the
Nature Biotechnology website.

1. Bellman, R.E. Eye of the Hurricane: An Autobio-
graphy. (World Scientific, Singapore, 1984).

Further study
To study a working example, you can download a small,
bare-bones C implementation of this algorithm (see
Supplementary Note). I used this C program to generate
Figure 1.

910 VOLUME 22 NUMBER 7 JULY 2004 NATURE BIOTECHNOLOGY

Wondering how some other
mathematical technique really works?
Send suggestions for future primers to
askthegeek@natureny.com.

©
20

04
 N

at
ur

e
P

ub
lis

hi
ng

 G
ro

up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

